Lars Faxälv


Hemostasis and biomaterial
Blood is a vital part of the human physiology; a transport system that brings nutrients and oxygen to sustain living cells and simultaneously facilitates the removal of carbon dioxide and other waste products from the body. To assure the continuity of these functions, it is of uttermost importance to keep the flowing blood inside the vascular system at any cost. The principal components of the haemostatic system are the blood platelets and the plasma coagulation system, both working in concert to create a blood stopping haemostatic plug when a vessel is ruptured. In modern health care, methods for treatment and diagnostics often implicate the contact between blood and artificial materials (biomaterials). Biomaterial surfaces may activate platelets and the coagulation cascade by exposing a surface that during blood contact shares certain characteristics with surfaces found at the site of vascular injury. Therefore it is of great importance that the mechanisms behind the interactions between foreign surfaces and blood are studied in order to minimize, and if possible, prevent unnecessary reactions that may lead to thrombosis.

Lars kyvetter

My project focus on methods to study blood–surface interactions in terms of surface induced plasma coagulation and platelet adhesion/aggregation.